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Abstract— This paper aims at comparing Pseudospectral
method and Discrete Geometric approach for modelling quantiza-
tion effects in nanoscale devices. To this purpose, we implemented
a simulation tool, based on both the methods, to solving self-
consistent Schr̈odinger-Poisson coupled problem for a 1D electron
gas according to Effective Mass Approximation model (suitable
for FinFETs and nanowire FETs).

Index Terms— Schrödinger-Poisson problem, Pseudospectral
method, Discrete Geometric approach.

I. I NTRODUCTION

The success of the MOS technology over the last thirty
years has been determined by its scaling capability. Nowadays,
the silicon technology is approaching the physical limits
of the traditional bulk MOS devices: therefore, new device
architectures like silicon nanowire FETs and fin-shaped FETs
(FinFETs) could represent a valid alternative to conventional
bulk planar MOSFETs [1]. Thus, an accurate and yet com-
putationally efficient description of the carrier quantization in
these devices is an important modeling target. In the electron
device community the numerical modelling of such a problem
is frequently tackled by solving a coupled Schrödinger-Poisson
problem, using Finite Difference (FD) or Finite Elements
(FE) methods. The simulation of arbitrarily shaped domains,
like those of real electron devices, is problematic with FD
methods; on the contrary, FE methods provide an accurate
geometric representation but leads to a discrete counterpart
of Schrödinger problem in terms of a computationally heavy
generalized eigenvalue problem.

The aim of this paper is to explore more efficient discretiza-
tion approaches, with respect to FD and FE, for self-consistent
solution of Schrödinger-Poisson coupled problem in the case
of a 2D carrier confinement, relevant for nanowire FETs and
FinFETs. In the full paper, we will present a systematic com-
parison between the numerical efficiency of Pseudospectral
methods (PS) [3], [6] and Discrete Geometric approach (DG)
[4], [5]. The PS and DG methods are benchmarked in terms
of CPU time, geometric modelling capability, by inspecting
their accuracy in terms of not only subband energies but also
electron concentration distributions.

II. QUANTIZATION IN NANODEVICES

The geometry of interest for a cylindrical nanowire FET
is shown in Fig. 1A. Quantization problem occurs on a bi-
dimensional domainD = Dch ∪ Dox on a plane(y, z)
normal to the transport directionx, whereDch, Dox denote
the channel and oxide domains respectively (see Fig. 1B);
the surrounding gate electrode is modelled as an equipotential
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Fig. 1. On the left: Device coordinate system(x, y, z) for a cylindrical
nanowire FET. On the right: Device cross-section normal to the transport
direction x, where the domain of interestD = Dch ∪ Dox is depicted.

domain. In order to compute the electron density in narrow
nanowires and FinFETs, the Effective Mass Approximation
(EMA) model is typically adopted to describe quantization
phenomena in domainD [2]; this leads to the following 2D
Schrödinger equation inD

−div qν(r) gradΨν,j(r) + U(r)Ψν,j(r) = λν,jΨν,j(r), (1)

whereν is the valley1 index,r is the position vector of a point
r = (y, z) ∈ D and∂/∂x = 0 holds;Ψν,j(r) denotes the wave
function corresponding to thej-th eigenvalueλν,j andqν(r)
is a double tensor, whose Cartesian components inD are the
inverse of effective masses for each valley indexν. Finally,
potential energyU(r) of an electron can be expressed as

U(r) = −eφ(r) − χ(r), (2)

whereφ(r) is electric scalar potential describing the electro-
static behavior of the nanodevice,e is the absolute value of
electron charge andχ(r) is the prescribed medium dependent
energy affinity of the electron inD. Interface condition inD
and boundary conditions on∂D must be added to (1), in order
to well pose the problem.

The electrostatic behavior of nanodevices can be modelled
by coupling to Schrödinger problem (1) a Poisson problem for
the electric scalar potentialφ(r)

−div ǫ(r) gradφ(r) = −e(N−

A (r) + n(r)), r ∈ D, (3)

whereǫ(r) denotes medium permittivity double tensor,N−

A (r)
denotes concentration of ionized acceptor atoms, that is null
in Dox, andn(r) denotes electrons concentration in the con-
duction band. Again boundary and interface conditions must
be added to close Poisson problem (3).

1A valley denotes a conduction-band energy minimum.



9. COUPLED MULTI-PHYSICS PROBLEMS 2

−6
−4

−2
0

2
4

6

−6
−4

−2
0

2
4

6
0

2

4

6

8

x 10
19

y [nm]z [nm]

n
(y

,z
)

[c
m

−
3
]

Fig. 2. Electron concentrationn(y, z) for a cylindrical nanowire obtained
with PS method in the effective mass approximation.

The coupling between Schrödinger (1) and Poisson (3)
problems is two fold. On the one hand, electric scalar potential
φ(r) determines potential energyU(r) in (2). On the other
hand, concentrationn(r) of electrons in the conduction band
in (3) is given byn(r) =

∑
ν

∑
j Nν,j |Ψν,j(r)|

2, whereNν,j

is a known prescribed function of eigenvalueλν,j [7].

III. D ISCRETIZATION AND NUMERICAL RESULTS

We discretized Schrödinger (1) - Poisson (3) coupled prob-
lem, according to PS [3] and DG methods [4], [5]; we provide
here a summary of the idea at the base of each methodology,
all the details will be given in the full paper.

PS method approximates unknown function of a differential
problem or of an eigenvalue problem by using algebraic or
trigonometric polynomials. Provided that a grid of nodes is
introduced inD, using an appropriate coordinate transforma-
tion based on polar coordinates [6], derivatives of unknown
function at each grid node are approximated with those of
the approximating polynomial. The resulting discretization
matrices are not sparse, but PS method can achieve the so
called spectral accuracy2.

On the other hand, DG approach puts the spot of the light
on the geometrical structure behind a physical theory [5].
According to this approach, we developed a novel discrete ge-
ometric formulation of Schrödinger equation in terms balance
equations; such balance equations involve integral variables
associated with precise geometric elements of a pair of two-
dimensional interlocked cell complexes inD, one dual of the
other, the primal being based on simplexes. We deduced, in
a purely geometric way, a computationally efficient discrete
counterpart of Schrödinger problem (1) in terms of astandard
symmetric eigenvalue problem with diagonal matrix on the
right hand of the eigenvalue problem [4]. Computationally,
this is a big advantage compared with Finite Elements, wherea

2The spectral accuracy consists of an exponential reductionof the approx-
imation error according tocN , with N being the degree of the polynomial
andc ∈ (0, 1).

symmetricgeneralized eigenvalue problem is obtained instead,
which is notoriously heavy to be computed and can be numer-
ically unstable. Moreover, boundary and interface conditions
together with non homogeneity and anisotropy of the media
involved in D can be accounted for in a straightforward
manner. Finally, we also reformulated the Poisson problem
(3) according to DG approach, yielding to a sparse algebraic
system of equations. In this way, we obtained a discrete coun-
terpart of the overall Schrödinger-Poisson coupled problem.

We solved the coupled problem for a cylindrical nanowire
with d=10nm and a [100] transport orientation. A doping
densityNA=1 × 1015cm−3, a gate voltageVG = 0.6V , an
equivalent oxide thickness of0.7nm and a gate work func-
tion φm=4.05eV have been considered in these preliminary
simulations. Electron concentrationn(y, z), obtained with PS
method, is shown in Fig. 2 for example; a similar result is
obtained with DG approach. The electron concentration is
clearly anisotropic, reflecting the anisotropy of the electron
energy dispersion. In order to obtain an efficient convergence
of the Schrödinger-Poisson loop, we employed the so called
non-linear formulation of the Poisson equation described in
[7].

IV. CONCLUSIONS

A comparative analysis, whose results will be presented
in the full paper, confirmed that Pseudospectral methods can
achieve the spectral accuracy but are mainly suitable for simple
geometries. On the contrary, Discrete Geometric approach
allowed to handle more complex and general 2D and 3D
geometries. Both the techniques yield to a standard matrix
eigenvalue problem instead of a generalized one like in Finite
Elements as concerns the discrete counterpart of Schrödinger
problem.
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